

DO YOU KNOW?

QUANTUM COMPUTING AND THE FUTURE OF CYBERSECURITY

*Are our laws ready for the post-quantum
world?*

WHAT'S CHANGING?

- Classical computers use bits — 0 or 1.
- Quantum computers use qubits, which can be both 0 and 1 simultaneously.
- That makes them **exponentially faster** at **solving certain problems**, including the ones that protect our data.

THE SECURITY THREAT: ENCRYPTION PARADOX

- From Banking to Aadhaar, today's digital world runs on cryptography.
- But quantum algorithms like Shor's Algorithm could break RSA and ECC encryption, the very foundation of cybersecurity.
- These encryption standards underpin the IT Act, DPDP compliance, and e-governance systems.

HOW QUANTUM BREAKS ENCRYPTION

- RSA and **ECC** depend on problems that take classical computers thousands of years to solve.
- A large-scale quantum computer could solve them in minutes.
- When that happens, **everything** from digital signatures to VPNs could be exposed.

HARVEST NOW, DECRYPT LATER: SILENT RISK

- Attackers are already storing encrypted data now to decrypt it later when quantum computers arrive.
- That includes government archives, healthcare data, and cross-border transfers.
- **Legal implication:** Sensitive data under DPDP and the IT Act could be retrospectively exposed.

THE POLICY TIMELINE: COUNTDOWN TO Q-DAY

- Experts estimate quantum-capable decryption by 2035–2040.
- Global initiatives like NIST's Post-Quantum Cryptography (PQC) and India's National Quantum Mission (NQM) are *racing to prepare*.

LEGAL AND GOVERNANCE GAP

- IT Act (2000), DPDP Act (2023) and global data laws assume classical encryption.
- None address the quantum risk horizon or mandate quantum-resistant standards yet.
- *CRGCL research indicates the need for forward-compatible cybersecurity and data protection frameworks.*

THE QUANTUM DEFENCE: POST- QUANTUM CRYPTOGRAPHY (PQC)

- Post-Quantum Cryptography (PQC) uses mathematical problems resistant to quantum attacks.
- Governments and companies must migrate early inventory, update, and future-proof.
- India should align NQM and MeitY encryption standards with NIST PQC protocols.

WHAT CRGCL RECOMMENDS

- ✓ Update cybersecurity rules to include quantum-safe encryption.
- ✓ Mandate crypto-agility in IT compliance frameworks.
- ✓ Integrate quantum resilience into digital public infrastructure (DPI) design.
- ✓ Build capacity for PQC testing and certification.

*Centre for Research and
Governance on Cyber Law*

Empower Yourself— Know Your Digital Rights!

Share this post to spread awareness.

*Follow CRGCL for more updates on
digital governance and cyber law.*

www.crgcl.com